The projection Kantorovich method for eigenvalue problems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A projection method for generalized eigenvalue problems

In this paper, we propose a method for finding certain eigenvalues of a generalized eigenvalue problem that lie in a given domain of the complex plane. The proposed method projects the matrix pencil onto a subspace associated with the eigenvalues that are located in the domain via numerical integration. The projection produces a small pencil with Hankel matrices.

متن کامل

A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems

This article discusses a projection method for nonlinear eigenvalue problems. The subspace of approximants is constructed by a Jacobi–Davidson type approach, and the arising eigenproblems of small dimension are solved by safeguarded iteration. The method is applied to a rational eigenvalue problem governing the vibrations of tube bundle immersed in an inviscid compressible fluid.

متن کامل

Projection Methods for Nonlinear Sparse Eigenvalue Problems

This paper surveys numerical methods for general sparse nonlinear eigenvalue problems with special emphasis on iterative projection methods like Jacobi–Davidson, Arnoldi or rational Krylov methods and the automated multi–level substructuring. We do not review the rich literature on polynomial eigenproblems which take advantage of a linearization of the problem.

متن کامل

The Jacobi-Davidson Method for Eigenvalue and Generalized Eigenvalue Problems

We consider variants of Davidson's method for the iterative computation of one or more eigenvalues and their corresponding eigenvectors of an n n matrix A. The original Davidson method 3], for real normal matrices A, may be viewed as an accelerated Gauss-Jacobi method, and the success of the method seems to depend quite heavily on diagonal dominance of A 3, 4, 17]. In the hope to enlarge the sc...

متن کامل

The Shooting Method for Solving Eigenvalue Problems

The shooting method is a numerically effective approach to solving certain eigenvalue problems, such as that arising from the Schrödinger equation for the two-dimensional hydrogen atom with logarithmic potential function. However, no complete proof of its rationale and correctness has been given until now. This paper gives the proof, in a generalized form.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 1994

ISSN: 0377-0427

DOI: 10.1016/0377-0427(94)90314-x